
Extending the Compactor 10th April 2019 (27th March 2019)

David Livingstone

Page 1 of 5

Extending the Compactor to Handle [IncrementOne]

Introduction
To do its job, the Compactor has to recognise a range of Word/Lex token patterns,
which requires looking up the names of operators, assignments, relvars, attributes,
scalar & relational types, and scalar operators & assignments.
 The names of relational operators and assignments can be incorporated
within the Compactor, because they are specific to the RAQUEL notation. (This is
traditionally done via decision tables built into the code. If new operators or
assignments are added, or others deleted or amended, this can be accomplished
by changing the decision table and re-compiling the code1).
 The names of relvars, attributes and relational types must be read in from
the Meta DB, since they depend on the DB currently being accessed.
 The names of scalar types, together with the names of their operators and
assignments, must be read in from a third source. Apart from the primitive types of
Truth, Number, and Text, the scalar types available depend neither on the
RAQUEL notation nor the DB being accessed, but on the scalar types that have
been plugged in to the DBMS, whose implementation the DBMS must therefore be
able to utilise2.

Hence developing and testing the Compactor is very different from developing and
testing the Tokeniser and Parser, neither of which should need alteration to handle
extensions to the RAQUEL notation.

Strategy of Unit Testing
The Poc Raquel DBMS is created from a complex web of object classes. If the
only way of developing and testing a developed version of the Compactor were to
use it in situ within the DBMS, and errors arose, one could have no certainty that
they arose from an error within the Compactor. They could have arisen from
elsewhere in the DBMS, perhaps as a result of changing the Compactor.
 Hence the strategy is to develop and test the Compactor in isolation from
the rest of the Raquel DBMS.

When Compactor development and unit testing is complete, the new version of the
Compactor is to be put back into the RaquelDBMS, and system tested.

Isolating the Compactor from the Rest of the RaquelDBMS
The Compactor code currently has significant links with the code of other object
classes in the RaquelDBMS. See the section OO Classes Used in the document
Proof of Concept – Documentation for information, particularly the Compactor

1
 In principle, other methods are also possible, such as having a separate file of data about

operators and assignments that is read in by the Compactor. The file is updated as and when
necessary.

2
 Logically a relational DBMS always needs the scalar Truth type in order to function correctly,

with the remainder all being optional. In practice, Number, and Text are always required and need
to be incorporated into the DBMS.

https://sourceforge.net/p/raqueldbsystem/wiki/PoCDBMSDocumentation/
http://raqueldbsystem.sourceforge.net/WikiDocs/PoCDBMSDocumentation/Compactor.pdf

Extending the Compactor 10th April 2019 (27th March 2019)

David Livingstone

Page 2 of 5

document (subtitled ‘CompactLexTokens’, the implementation name of the
Compactor). Other relevant documents are the :

 Raquel DBMS class.

 “Token Registration” document, which references the Token Handler
class and the Scalar Handler class.

 Input Stack class.

 “Compactor Versus Constructor Function” document.

 The “Token Classes Derived from ‘RaquelToken’“ diagram.

 “Operator and Assignment Token Classes” document.

 “The ‘Base’ Which Relational Operator and Assignment Token Classes
All Inherit” document.

CompactLexTokens is a member function of the CInputStack class, and calls a
number of other member functions of the CInputStack class to carry out parts of
the compaction process. It also calls the Tokeniser, Compactor (recursively) and
Parser. The latter are required so that the Compactor can handle parameters and
literal values.

In fact CompactLexTokens utilises everything within the CInputStack class, with
the exception of member function CreateTree. CreateTree acts like a ‘main’
function for the Input Stack, since all it does is successively call the Tokeniser,
Compactor and Parser (checking for errors arising after each of the 3 function
calls); and the Input Stack only exists for this to be carried out.
 CreateTree is the only public member function of the CInputStack class,
the remainder being protected functions.

However there is code in further parts of the RaquelDBMS which is also referenced
directly or indirectly by Compactor functions, and so must be provided.

Code that is used from outside the CInputStack class is :

 Lex/Word Token struct SLexToken, and typedef LexTokenVector (a
standard vector of SLexToken values), both defined in TokenTypes.h.

 Enumerated type ELexTokenType, from TokenTypes.h.

 Member function AddToNameList from CNameListToken class.

 Member function AddNameList from CRaquelDBMS class.

 Member function ResolveRelationType from class CRaquelDBMS
(invoked by CompactLexTokens) returns a value of enumerated type
ERelationType from RaquelDBMS.h.

 RelationNameCache, a member of class CRaquelDBMS (invoked by
ResolveRelationType).

 AttributeNameCache, a member of class CRaquelDBMS (invoked by
ResolveRelationType).

 ScalarTypes, a member of class CScalarHandler (invoked by
ResolveRelationType).

 IsScalarFunction, a member of class CScalarHandler (invoked by
ResolveRelationType). It calls HasFunction, a member of class
CScalar, which is a pure virtual function that is implemented by each
scalar class.

Extending the Compactor 10th April 2019 (27th March 2019)

David Livingstone

Page 3 of 5

 GetRelationDesc, a member of class CRaquelDBMS (invoked by
ResolveRelationType). It looks through the “Name” attribute of the Meta
DB relvar “Relations”.

 The “Name” attribute of the Meta DB relvar “DefaultRelation”.

 CreateRaquelTokenByType, a member function of class CRaquelDBMS
(invoked by CreateChainedToken).

 CreateRaquelToken, a member of class CRaquelDBMS – not
CRaquelToken - and is invoked by CreateSingleToken. It calls
CreateToken, a member of class CTokenHandler. It makes use of
virtual member functions of the CRaquelToken class, which are
overridden by the corresponding function of the relevant Raquel token
class.

 CreateRaquelTokenByType, a member of class CRaquelDBMS
(invoked by CreateSingleToken). Its sole input value is of type
‘EStdToken’, defined in RaquelToken.h. It calls CreateStandardToken, a
member function of class CTokenHandler.

 Name Lists are implemented as objects of the CNameListToken class,
which is descended from the CRaquelToken class.

 All token classes (including those that use namelists) that inherit from the
CProcessToken class, which in turn inherits from the CRaquelToken
class. They comprise all the relational operator and assignment token
classes, plus the CScalarToken class (for scalar values and variables)
and the CScalarProcessToken class (for scalar operators and
assignments). Objects of these classes are Raquel tokens 3.

In summary, the software involved in the Compactor implementation, beside the
CInputStack class, is the :

 CRaquelDBMS class, which uses the Hasher class.

 CRaquelToken class.

 TokenTypes.h file.

 CTokenHandler class.

 CNameListToken class.

 CProcessToken class.

 All relational operator and assignment token classes.

 CScalar class.

 CScalarHandler class.

 CScalarToken class.

 CScalarProcessToken class.

3
 Note that the original logical design specified a standard approach to tokens. Its physical

implementation should result in a single style of token – or single token class – that handles all
token values. However the prototype DBMS uses 2 token classes for all the scalar tokens, but for
all the relational tokens it uses an individual token class for each kind of relational token.

Extending the Compactor 10th April 2019 (27th March 2019)

David Livingstone

Page 4 of 5

Implementing the Isolation of the Compactor
In order to minimise the detailed understanding of the complex Compactor code
required, it seems best to start by using the entire CInputStack class, with
CreateTree as a form of ‘main’ program, suitably amended as required. (Note that
the CRaquelDBMS class includes the member function ProcessTextQuery, whose
purpose is to take a statement input to the DBMS and execute it, using the
CInputStack class’s CreateTree member function to produce the parse tree for
execution). Amendments should include :

1. Omit calling the Parser. Call only the Tokeniser (to produce Word/Lex
Tokens for the Compactor) and then the Compactor. Note that the
Parser will still be called from within the Compactor to handle parameter
expressions and literal relational values; but the parse trees so produced
are internal to the tokens which form the parse tree that represents the
statement.

2. Add user outputs to display input to the Compactor, output from the
Compactor, and any other required relevant data.

There will still need to be an appropriate real ‘main’ program to call CreateTree.

There are nevertheless simplifications to the non-CInputStack code that can be
made to isolate the Compactor code as much as possible. The remaining classes
and files listed above are now considered in turn, in order to see what they might
be.
 Only the extension of the Compactor to handle [IncrementOne] – i.e. be able
to additionally cope with the Meta operator and <==Attribute, <==Key, and
<--Remove assignments – is of concern here, not the algorithms that execute the
operator/assignments.

The relevant files and classes are :

 CRaquelDBMS class.
 A (static) object of this class forms the Raquel DBMS, so it seems
sensible to retain the class. However some members of the object can
be dispensed with, as they are irrelevant to testing the Compactor. They
are the ’ExecutionStack’, ‘StorageStack’, and ‘ExternalInterface’. This
means that the RaquelDBMS initialisation and getter & setter functions
for these members can also be omitted, as can the .h and .cpp files
containing the code for these object classes.
 The RaquelDBMS object includes the RegisterTokenType member
function that ‘registers’ all the different kinds of token. All of them can be
omitted, apart from the 4 new ones required for [IncrementOne], since
the Compactor only needs these to be tested to see if it functions
correctly for these 4. The object files for the omitted tokens can also be
omitted.
 Likewise the RaquelDBMS object includes the RegisterScalarType
member function that ‘registers’ all the different kinds of scalar types.
As the Demonstration DB only uses Integer, Int32 and Text types, and
there is no need to add further scalar types for [IncrementOne], the

Extending the Compactor 10th April 2019 (27th March 2019)

David Livingstone

Page 5 of 5

remainder can be omitted. Their object files can also be omitted.
 All the relevant ‘#include’ statements need to be omitted from the
RaquelDBMS class file.

 CRaquelToken class. Retain ‘as is’.

 TokenTypes.h file. Retain ‘as is’..

 CTokenHandler class. Retain ‘as is’.

 CNameListToken class. Retain ‘as is’.

 CProcessToken class. Retain ‘as is’.

 All operator and assignment token classes. Only those pertaining to the
4 new processes of [IncrementOne].

 CScalar class. Retain ‘as is’.

 CScalarHandler class. Retain ‘as is’.

 CScalarToken class. Retain ‘as is’.

 CScalarProcessToken class. Retain ‘as is’.

Those retained ‘as is’ either have no code that could be omitted, or it is not
worthwhile to check through them in detail to see if there is any omittable code.

Note that code relevant to the 4 new processes of [IncrementOne] is not in the
current prototype, and therefore will have to be added. This will include new code
references and ‘#include’ statements where relevant.

Note
As described in pages 9-12 of the Poc Implementation Documentation written by
the implementers, the Compactor as implemented operates slightly differently to
that specified and required :

1. The assignment prefixes (‘<--‘, ‘<==’, and ‘==’) are treated as separate text
from the assignment’s keyword (e.g. Insert, Remove). At the time this was
allowed, to provide additional flexibility in writing statements. This is now
recognised as an error, since it is important that assignment keywords are
always easily distinguished from operator keywords, by always having the
formers’ prefixes as an integral part of the keyword per se.

2. The right-hand operand of some assignments – e.g. <--Insert – is
incorporated within the assignment’s RAQUEL token. The operand should
be represented by its own token.

http://computing.unn.ac.uk/raquelDBsystem/content/Current%20Prototype/Proof%20of%20Concept%20Prototype/RaquelImplementationFinal.pdf

