
Summary of the GNU Autotools

Overview
Packages are compiled and installed on Linux/Unix platforms using the ubiquitous 'make'
utility. 'make' is driven by one or more 'Makefiles' that specify what the 'make' program has
to do. Thus each combination of a package and Linux/Unix platform requires 'Makefiles'
that are specific to that combination of package and platform.

It is useful to have tools that support the creation of the 'Makefiles'. There are 2 main GNU
Autotools to do this. One is called Automake and its purpose is to support the creation of
'Makefiles' to suit the package. The other is called Autoconf and its purpose is to support
the tailoring of the 'Makefiles' to fit the platform. In practice their usage is intertwined
(although in principle they can be used independently of each other). Automake uses the
tool Libtool to deal with software libraries. There are other subsidiary Autotools as well.

The following diagram summarises how the 2 tools are used together :-

Page 1 of 10

Autoconf Automake

config.status

config.h Makefile src/Makefile

make

Installed System

configure Makefile.in src/Makefile.in

Input files Input files

Package source files

The colour code is as follows :
• A 'white' box represents a file that is an input to the Autotool Build System.
• A 'red' box represents a program in the Autotool Build System.
• A 'yellow' box represents a script file created by a 'red' program.
• A 'grey' box represents a script file created by the execution of a 'yellow' script file.
• A 'blue' box represents a file that is to be input to the 'make' utility program.
• A 'black' box represents the installed system.

The 'blue' dotted lines are used to show that the whole process comprises 3 parts :
1. The Autoconf and Automake programs and their input files are located on the

platform of the creator/maintainer of the package; they are run there by the package
developer/maintainer to create the 'yellow' script files. The tools are not
downloaded to the installation platform.

2. The 'yellow' script files are downloaded, with the package source code files, to the
user's platform. (Typically all the files are collected and compressed into a
.tar.gz file, which is downloaded and unzipped on the user’s platform). The user
executes the ./configure command in order to execute the 'yellow' script files so
as to create the 'blue' input files for 'make'. No other user action is required.

3. The user then runs the 'make' utility to compile and install the package on their
platform. The 'Makefiles' produced conform to GNU Coding Standards, which
among other things, allow the user to :
◦ compile the program;
◦ clean up, i.e. remove files resulting from the compilation;
◦ install the program in the required directory;
◦ uninstall the program from where it was installed;
◦ create a source distribution archive, i.e. a tarball.
So 'make' is executed with whatever options are needed to install the package as
required.

The diagram assumes that there can be 'Makefiles' in sub-directories as well as in the
main directory. The tools support a GNU standard file system hierarchy, implemented via
defaults; src is a standard sub-directory name for source files.

The tools are generalised so that they can cope with the installation of library code in
addition to applications.
This overview omits a number of files that are often involved in practice, and may end up
on the user's platform.

Automake
The purpose of Automake is to enable a programmer to write a high-level specification of
a package's build requirements – i.e. what needs to be built and where it should it be
installed. It makes the programmer more productive by relieving them of the tedious and
error-prone detail involved in writing a 'Makefile' per se.

Automake is written in Perl; it uses Libtool to handle both static and shared libraries.

The specification for each required 'Makefile' is written in 'make' syntax. It is a series of
'make' variable definitions, with additional rules as required. The specification is held in a
file called Makefile.am, which is input to Automake, which outputs a shell script held in a
file called Makefile.in.

Page 2 of 10

Each Makefile.am contains a series of 'make' variable definitions, supplemented by
Makefile-type rules where necessary. At its most basic, a Makefile.am contains :

• a line declaring the name of the program to build;
• a list of source code files;
• a list of command line options to be passed to the compiler (e.g. the directories

containing the relevant header files);
• a list of command line options to be passed to the linker (e.g. the libraries needed

and the directories containing them).

From the information in a Makefile.am file, Automake generates a Makefile.in file.

More sophisticated functionality is also provided. For example, Automake handles
dependency information, so that if a source file is modified, the next invocation of ‘make’
will know which files to re-compile and link.

Autoconf
The main aim of Autoconf is to make it easy for a user to install a package on a platform.
Supporting the developer/maintainer is a secondary goal.

The input to Autoconf is a file called configure.ac1 which lists the platform-specific build
and run-time features that the package needs or can use. The platform must be checked
to ensure that they are all available; if they are, when the 'Makefiles' are created, they are
configured to take account of the platform's specific features.

From its configure.ac input file, Autoconf creates a shell script file called configure. It is
the configure file that is run on the installation platform, and which for each Makefile.in file,
generates a 'Makefile' to be used with 'make' on the installation platform.

configure.ac is a shell script written in terms of macros; indeed it may contain only macros.
Each macro encapsulates the searching for, checking, and/or testing of a specific feature,
i.e. it executes one specific function. Apart from an initialisation macro, which must come
first, and an output macro, which must come last, the macros appear in a 'partial
sequence'; i.e. the sequence is flexible, requiring only that a macro appears after any
other(s) that produce necessary input for it.

So Autoconf may be viewed as essentially a macro processor that converts configure.ac
into configure, a fully-fledged shell script.

Libtool
Because many Linux/Unix systems have their own format for shared libraries, and
compiling and linking can require different build flags in many cases, Libtool is used to
avoid the complication this can cause by providing a single, simple new library format that
abstracts from all the different variants, includes static libraries, and can be used instead
for all libraries.

The new format is referenced by a call to libname.la, where name is the name of the
library and la stands for 'libtool archive'.
Libtool consists of a wrapper script that translates operations involving libname.la into the
correct operations for the current platform's real library. In a Makefile.am, the link is to *.la
files.

1 The file configure.ac is sometimes known as configure.in. They are both names for the same file.
configure.ac is now the preferred name, although the name configure.in still works. It is recommended
that the *.in suffix is now only used for files processed by the config.status script.

Page 3 of 10

configure.ac and the various Makefile.am files need to be adjusted accordingly to cope
with the relevant macros, etc.

The Usage of Automake & Autoconf
The overview of Automake and Autoconf used together omits a number of other files and
subsidiary Autotools that are, at least optionally, involved in their operation. Therefore a
more detailed description is now given.

Some of these other files are script files, and end up on the user's platform; so it is useful
to know what they are, and whether they should or could be removed.

Creating File 'configure.ac'
The configure.ac file can be written manually. Alternatively the Autoscan program can be
used to examine package source files in the directory tree for common portability
problems; it creates a file called configure.scan, which is a preliminary configure.ac file.
After manually checking it, and amending it if necessary, it must be renamed configure.ac
in order for it to be used thereafter. Autoscan can also check any pre-existing
configure.ac for completeness. The following diagram summarises this :-

Since configure.ac is read by several Autotools, it is worthwhile to make the consequent
macro processing efficient. The actual macro processing is carried out by the general-
purpose GNU M4 macro processor included in all Linux/Unix systems. However instead of
running M4 directly, the Autotools invoke it via autom4te. The Autotools have a number of
common needs when applying M4, and these are factored into a layer above M4, namely
autom4te, which supports them via macro processing extensions designed to support the
Autotools.

One common need is that for storing files of information derived from M4 macros when
one Autotool runs, for use when a subsequent Autotool runs; this can save a lot of
subsequent re-processing. The information is stored in files in directory autom4te.cache.
(Since autom4te.cache is a cache, it can be removed later if necessary).

Creating File 'aclocal.m4'
In order for Autoconf to process its input configure.ac file, it needs all the macros relevant
to the processing collected together into one file, to be called aclocal.m4. The subsidiary
Autotool aclocal does this.

All the stock macros, required for common configuration checks, are installed with
Autoconf, and held in the file aclocal.m4. This set of macros may need to be expanded to
include others needed to install the package. To enlarge the set of macros, aclocal.m4 is
renamed acsite.m4, and then aclocal reads the contents of acsite.m4, acinclude.m4
(containing local macros) as well as the input file configure.ac to create a new aclocal.m4

Page 4 of 10

Source files autoscan
configure.scan

Manually review/amend
 & rename

old configure.ac

configure.ac

file, which now contains the expanded set.

This can be portrayed schematically as :-

A new alternative to using acinclude.m4 is instead to collect additional macros in individual
.m4 files in a directory called m4, and have aclocal read and add all those macros to
those in aclocal.m4.

In due course, the functionality of aclocal is to be incorporated into Autoconf.

Creating File 'config.h.in'
The utility autoheader reads configure.ac and aclocal.m4 to create a file called config.h.in
containing macro definitions for the package's .cpp files :-

Running Autoconf

When Autoconf is run with those same 2 file inputs, it creates the configure script file. It is
not necessary to understand the detailed, technical contents of configure.

Running Automake
When Automake is run, it generates a Makefile.in shell script for each Makefile.am file
that is input. It is not necessary to understand the detailed, technical contents of
Makefile.in files.

Automake also generates other script files to be used by 'make', together with other
standard files specified by the GNU Programming Standard for package installations :-

Page 5 of 10

aclocalaclocal.m4

aclocal.m4

acsite.m4

aclinclude.m4
Rename

Directory m4/

autoheader config.h.in

aclocal.m4

configure.ac

configure.ac

configure

aclocal.m4

configure.ac

Autoconf

Note the following :

• The input files are one configure.ac file and as many Makefile.am files as is
required by the installation of the package on the platform.

• Automake uses the libtoolize program where necessary to handle static and
shared libraries. The latter generates the script files ltmain.sh and ltconfig which
are the means by which the libraries will actually be set up on the installation
platform.

• The script files config.guess and config.sub are used by Automake and libtoolize
to derive information about the system on which the installation will be built.
config.guess determines the type of the computing system; it returns a
'configuration name' of the form “CPU-Manufacturer-Kernel-Operating System”, or
an abbreviated version of this. config.sub translates abbreviated names into the
full canonical form.

• A Makefile.in is generated and output for each Makefile.am input. Makefile.in files
are complex script files, just as the configure file is, which will be used in the next
phase to generate the actual 'Makefiles' required to install the package on the
installation platform.

• The output files COPYING and INSTALL are standard 'boilerplate' files created to
conform to the GNU package installation standards. (Hence the ‘cyan’ colour).
Depending on the parameters input to Automake, other such files in the GNU
standard can be output as well, e.g. AUTHORS, NEWS, README, and
ChangeLog. Note that these files are created to be part of the package installation,
and so will appear on the platform as an ancillary part of the installation.

• The script file install-sh should come with Automake for use with the expansion of
the AC_PROG_INSTALL macro. The Linux ‘Install’ utility copies files from source

Page 6 of 10

configure.ac

src/Makefile.in

config.guess
Makefile.inAutomake

libtoolize

src/Makefile.am

Makefile.am

COPYING

config.sub

INSTALL

ltmain.sh

ltconfig

stamp-h.in

missing

install-sh

locations to destination locations and sets their permissions. Since this utility can
vary between platforms, install-sh acts as a wrapper round the local ‘Install’, so that
a ‘Makefile’ can always install files as required on the user’s platform.

• The script file missing is a wrapper for use around several of the Autotools. If a
‘Makefile’ triggers a re-build that requires the use of an Autotool, then as that
Autotool is not (normally) on the user’s platform, the missing script will output a
helpful and meaningful error message to the user; should the tool actually be on the
user’s platform, it will allow it to be executed as normal.

• stamp-h.in is output as a timestamp file to indicate whether config.h.in is up-to-date;
it contains the time expressed as a 'timestamp' string. This allows config.h.in to be
marked as up-to-date without actually modifying it, which can be useful since
config.h.in depends upon configure.ac, but it is easy to change configure.ac in a
way which does not affect config.h.in.

Running the configure File
The previous steps have created all the 'yellow' build system files. The final Autotool step
is to run configure, by executing ./configure. Executing configure probes the target
system for functions, libraries and tools on the platform that the package needs. It then
creates the script file config.status, and executes it. It is config.status that generates all
the files required by 'make' from the input files provided :-

Note the following :
• The 'grey' and ‘blue’ files are created during the process and both will exist at the

end of it, although only the ‘blue’ files are needed by ‘make’.
• configure can take configuration 'variables' as input parameters to control how it

performs. Run ./configure –help to get a full list of them.

Page 7 of 10

config.statusconfig.log

config.cache

configure

Makefile.in

src/Makefile.in

config.h.in

src/Makefile

Makefile

config.h

config.sub

config.guess

stamp-h.in

ltconfig

ltmain.sh

stamp-h1

libtool

• configure generates a config.cache file which contains the results of the system
probing. config.cache can be used to speed up any future re-configurations, so
configure may also read in any pre-existing config.cache file.

• The config.status script creates the ‘Makefiles’ from the Makefile.in files, the
config.h file from the config.h.in file, and the stamp-h1 file from the stamp-h.in file.
In doing this, config.status applies GNU coding standards, which include such
things as :
◦ program behaviour (e.g. error reporting, standard command line options),
◦ coding style
◦ configuration,
◦ Makefile conventions.

• The config.h file contains all the '#define' statements required by the compiler.
stamp-h1 enables ‘make’ to consider config.h as up-to-date and avoid re-
compilation even when the latter’s modification time indicates otherwise.

• config.status also creates a config.log file in which is recorded messages produced
by compilers (to help with debugging if configure makes a mistake).

• config.status can be run on its own to regenerate files without re-running the system
probing.

• If one or more libraries are to be set up, config.status uses the ltconfig shell script
file to do the work. ltconfig takes input from the ltmain.sh file and outputs the libtool
file. libtool will be used by ‘make’ to actually handle the libraries; it is invoked as a
wrapper script around compilers, linkers, install and cleanup programs.

• ltconfig uses the script files config.guess and config.sub for the same purposes as
before.

Running ‘make’
It is the execution of make commands after executing ./configure that actually installs
the package. The following diagram summarises the files involved in executing make
commands (excluding ‘Boilerplate’ files) :-

Page 8 of 10

config.h Makefile src/Makefile

make

Installed System

Package source files

libtool

stamp-h1

install-sh

missing

Use of Autoreconf
If the package is updated, and/or the package’s build system is updated, and/or any
Autotools are updated, the Autoreconf program is used to update everything, re-generate
all the input files required by ./configure command and make.

Autoreconf takes the configure.ac, Makefile.am and any src/Makefile.am files as input,
and runs Autoconf, Autoheader, aclocal, Automake, libtoolize and autopoint
repeatedly, as appropriate, to output an updated package’s build system. By default,
Autoreconf only remakes those files that are older than their sources, but it can be given
a parameter that forces it to update all files regardless.

Sequence of File Usage
1. User-Provided Input Files

configure.ac
Write manually, or apply autoscan to the package source files and amend the
result if necessary.
Makefile.am
Write manually for each directory in which a ‘Makefile’ is required.

2. User-Generated Input Files
aclocal.m4
Generate using aclocal, with possible manual input.
config.h.in
Generate using autoheader.

3. System-Provided Support Files
install-sh, missing, config.guess, config.sub.
Normally provided with Automake and libtoolize.

4. Execute Autoconf
This generates configure.

5. Execute Automake
This generates a Makefile.in for each Makefile.am, stamp-h.in, if libraries are to
be created, ltmain.sh and ltconfig, and the ‘Boilerplate’ files.

6. Include the following files in the ‘tarball’ which contains the package’s source
files.
All the Makefile.in files, stamp-h.in, ltmain.sh and ltconfig if libraries are to be
created, the ‘Boilerplate’ files, configure, install-sh, missing, config.guess,
config.sub, and config.h.in.

7. Download the ‘tarball’ to the installation platform.
Unpack the ‘tarball’.
Execute ‘./configure’.
Execute the ‘make’ command to build the package.
If required, execute 'make install' to copy the software to the right location
with the right file permissions.

Generating the Autotool Files for the ‘Tarball’
The following diagram combines the previous diagrams for the stages required to create
the build system for the package.

Page 9 of 10

Coloured boxes with black outlines represent files to be downloaded to the user’s platform.

Page 10 of 10

autoheader

Autoconf

Automake

Package source
files

autoscan
configure.scan

Manually review/amend
 & rename

old configure.ac

configure.ac

aclocal

aclocal.m4

aclocal.m4

acsite.m4

aclinclude.m4
Rename

Directory m4/

Makefile.am

src/Makefile.am

config.h.in

configure

src/Makefile.inconfig.guess

Makefile.in

libtoolize

COPYING

config.sub

INSTALLltmain.sh

ltconfig

stamp-h.in

missing

install-sh

	Summary of the GNU Autotools

