
[IncrementOne] : Implementation Notes 4th June 2018

David Livingstone

Page 1 of 6

[IncrementOne] : Implementation Notes

Introduction
It is desirable that the implementation of the Meta operator, and the <==Attribute,
<=Key, and <--Remove assignments take into account the planned future development
of the RAQUEL DBMS.

Both the shorter and the longer term developments require parts of the current prototype
to be re-factored so as to simplify the DBMS and make its future development more
feasible.

These notes explain the re-factoring relevant to the implementation of the
[IncrementOne] operator and assignments, and how they affect it.

Note that the re-factoring will not be implemented as an integral part of implementing
[IncrementOne]; rather it will come after its implementation. However the design and
implementation of [IncrementOne], while it must fit into the existing implementation
structure of the prototype, should be such as to facilitate the re-factoring afterwards as
much as possible.

Background
The Re-Factoring Notes summarise the re-factoring overall and the reasons for it to be a
part of the development of the DBMS.

There are 2 areas of re-factoring relevant to the [IncrementOne] development :

1. Classes Representing Tokens
Each operator and assignment has its own so called ‘Token’ class to represent it. The
members of the class fall into one of 2 groups :

1. Members that are part of, or relate to, a genuine token that is a node in a
parse tree and represents the operator/assignment in that parse tree.

2. Members that are part of, or relate to, the execution of that
operator/assignment. Each operator and assignment is implemented by its
own algorithm.

Looked at from a general object-oriented perspective (the DBMS is built in a pure OO
fashion), this design of Token classes is not unreasonable.

However from a general DBMS perspective, and from the viewpoint of the layered
architecture designed for the Raquel DBMS, the design is counter-productive and needs
to be changed. Specifically the 2 groups need to be separated out as follows :

1. A class for genuine tokens, whose purpose is solely to represent operators
and assignments in a parse tree.

2. The operators’ and assignments’ execution algorithms1 held separately as
functions to be invoked as required by other parts of the DBMS.

1
 In principle there may be more than one per operator/assignment.

https://sourceforge.net/p/raqueldbsystem/wiki/Re-factoring/

[IncrementOne] : Implementation Notes 4th June 2018

David Livingstone

Page 2 of 6

The genuine token part of the current token classes will continue to be used in the
Compactor and Parser of the re-factored DBMS2. There is no logical need for the
Compactor and Parser to be altered by the change.

The components of the execution algorithms fall into different categories, which are
incorporated into different parts of the DBMS. This is particularly significant for the
[IncrementOne] operator and assignments, and is considered later.

2. The Meta Data Stack
The Meta DB consists of a set of relvars, and these relvars are treated and their values
stored in an identical fashion to the DB’s relvars. The difference between Meta DB
relvars and DB relvars is that :

1. Meta DB relvars have their values retrieved indirectly via the Meta operator
and their values updated indirectly by assignments that assign properties to
DB relvars 3. (These properties are integrity constraints and bindings, and it
is the purpose of the Meta DB to hold the data describing these properties).

2. DB relvars have their values retrieved and updated directly by statements
input by the user.

The planned Raquel DBMS architecture has a Meta Stack, which consists of 2 modules,
the Meta Operator module and the Data Definition Module.

1. The purpose of the Meta Operator module is to translate an invocation of the
Meta operator into relational algebra expressions to be executed on Meta DB
relvars.

2. The purpose of the Data Definition module is to translate an invocation of a
data property assignment into relational algebra expressions that update Meta
DB relvars and update the DB itself. This can involve the execution of parallel
relational statements.

In both cases, the resulting translations are then treated like any other relational
expression and executed by the Execution Stack.

Thus the Meta Stack modules execute some of the algorithms necessary to implement
the [IncrementOne] operator and assignments, and the Execution Stack caries out the
remainder. (Non-[IncrementOne] operators/assignments are just executed by the
Execution Stack).

Due to time pressures, the handling of the Meta DB was not implemented in the
prototype according to the above Raquel DBMS architecture.

Instead the Meta Stack was replaced by a Meta DB Stack, which acts as a scaffold.
(The prototype already has a Storage Stack for the DB relvars). Because of the
prototype’s limitations, the Meta DB Stack only needs to provide a means of retrieving
meta data about relvars, and not updating it, and is sufficient for this purpose. The

2
 The genuine token part of the current token classes does include complications which appear

unnecessary, giving an opportunity to improve the design of the genuine tokens at a later date. Since the
new tokens would continue to be expressed as object values, this would not require any changes to the
Compactor or Parser.
3
 <==Attribute, <=Key, and <--Remove assignments are all examples of these.

[IncrementOne] : Implementation Notes 4th June 2018

David Livingstone

Page 3 of 6

retrieve-only usage resulted in the Meta DB Scaffold being treated like a separate
Storage Stack.

This is despite the fact that the purpose of a Storage Stack is to provide a specific
physical storage mechanism, which may used to physically store the value of any relvar,
regardless of whether it is a Meta DB relvar or a DB relvar. In principle the DBMS may
have several Storage Stacks, each one providing it with a particular physical storage
mechanism. Currently the prototype has only one physical storage mechanism, i.e. it
logically only has one Storage Stack, used by the DBMS to access the values of DB
relvars and via the Meta DB Stack scaffold to access the values of Meta DB relvars.

The planned DBMS architecture is described in The Logical Architecture of the
RAQUEL DBMS document. For comparison, the prototype’s architecture is shown on
page 6 of the Raquel Prototype (2009) : Implementation Documentation . The
prototype’s architecture needs to evolve towards the originally planned architecture.

Executing Operators and Assignments

Current Prototype
The execution members of the ‘Token’ classes in the current prototype operate as
follows.

Each class has an ExecuteTree method, which handles general parse tree processing
with respect to the operator/assignment (e.g. checking for valid operands). ExecuteTree
then calls a second method, named after the particular operator/assignment, which
executes the specific algorithm that implements that operator/assignment.

This 2-part approach is not used consistently for all operators/assignments. Sometimes
there is just an ExecuteTree method, which also incorporates the implementation
algorithm for the operator/assignment.

There always needs to be an ExecuteTree method for each operator/assignment. This
is because the parse tree is executed by first executing the operator/assignment that is
the root node of the parse tree, which then recursively calls ExecuteTree for each sub-
node in the tree which does not yet have a value. ExecuteTree is a standardised name
to allow this recursion process to apply all the way down to the leaf nodes of the parse
tree. For further details, see section “5.2) Execution” of the Raquel Prototype (2009) :
Implementation Documentation .

Re-Factored DBMS
The re-factored DBMS will have an Execution Stack whose purpose is to execute the
final parse tree. By final is meant the parse tree that results after various processing
has been carried out on the original parse tree, which was a direct representation of the
user’s input statement. See The Logical Architecture of the RAQUEL DBMS document
for details.

The Execution Stack will carry out the processing that the current ExecuteTree method
carries out, and call the relevant function (there could be a choice) to execute the
operator/assignment.

http://computing.unn.ac.uk/raquelDBsystem/content/RAQUEL%20the%20Architecture/Architecture/Logical%20Architecture/LogicalDBMSArchitecture.pdf
http://computing.unn.ac.uk/raquelDBsystem/content/RAQUEL%20the%20Architecture/Architecture/Logical%20Architecture/LogicalDBMSArchitecture.pdf
http://computing.unn.ac.uk/raquelDBsystem/content/Current%20Prototype/Proof%20of%20Concept%20Prototype/RaquelImplementationFinal.pdf
http://computing.unn.ac.uk/raquelDBsystem/content/Current%20Prototype/Proof%20of%20Concept%20Prototype/RaquelImplementationFinal.pdf
http://computing.unn.ac.uk/raquelDBsystem/content/Current%20Prototype/Proof%20of%20Concept%20Prototype/RaquelImplementationFinal.pdf
http://computing.unn.ac.uk/raquelDBsystem/content/RAQUEL%20the%20Architecture/Architecture/Logical%20Architecture/LogicalDBMSArchitecture.pdf

[IncrementOne] : Implementation Notes 4th June 2018

David Livingstone

Page 4 of 6

Therefore it is important for the implementation of [IncrementOne] that there is always a
function separate from ExecuteTree that executes the operator/assignment, so that it
may be easily transferred ‘as is’ (or with the minimum of amendment) to the Execution
Stack when the Token Separation re-factoring is carried out.

Meta DB Storage
Inherent to the [IncrementOne] implementation is the accessing of Meta DB relvars.
The methods used for this will remain unchanged from the current prototype. No new
Storage Stack is planned for the [IncrementOne] implementation, so no change is called
for.

Implementing to Facilitate Re-Factoring
Consequently the aspect of [IncrementOne] implementation that facilitates later re-
factoring consists of :

1. Creating a new ‘Token’ class for each of the Meta operator and the
<==Attribute, <=Key, and <--Remove assignments, with the same general
class structure and set of data and function members as the ‘Token’ classes
of the existing operators and assignments. In this way they will fit into the
current OO architecture of the DBMS, and be usable in the same way.

2. Implementing the ExecuteTree method such that its component parts may be
later re-used with minimal re-programming in the re-factored DBMS.

 [IncrementOne] Operators and Assignments
These differ from the operators and assignments already implemented as follows.

Every non-[IncrementOne] operator/assignment can be directly implemented by an
algorithm, expressed in code as a function, that operates directly on the value(s) of its
relational operand(s). The operator/assignment and its operand(s) may be considered
as a small parse tree consisting of the operator/assignment node and its operand
node(s). That small parse tree is generally a component of a larger parse tree that
expresses the user’s complete input statement. (This does not prevent the small parse
tree from being the entire tree).

By contrast, the Meta operator and <==Attribute, <=Key, and <--Remove assignments
require that the small parse tree comprising them and their operand(s) be translated into
different parse trees, and those new parse trees be executed. The translations are a
direct logical consequence of their semantics and so must be implemented. Consider
each operator/assignment in turn :

Meta operator. To execute a Meta operation requires translation into a parse tree
describing a Restrict operation on the relevant Meta DB relvar, and a Project
operation on the results of the Restriction. The latter parse tree is then executed.
 Project and Restrict are both already implemented and have algorithms that
directly execute their functionality. Since the functionality of the Meta operator is
defined in terms of Project and Restrict, it is necessary to execute the Meta
operator in terms of them and not via some other algorithm. This also provides
simpler code.

[IncrementOne] : Implementation Notes 4th June 2018

David Livingstone

Page 5 of 6

<==Attribute assignment. The basic functionality of the assignment is to assign a set of
attributes to a relvar. This requires a translation of the <==Attribute assignment
parse tree into an <--Insert assignment parse tree that will add the necessary
attribute data into the Attributes Meta DB relvar. The latter parse tree is then
executed.
 Depending on the definitional state of the relvar being assigned attributes, the
assignment may have additional tasks to accomplish.
 If the relvar does not yet exist and so is being created by the assignment, then it
will also have to create the relvar by inserting the relevant data into the Relations
Meta DB relvar. This requires the generation and execution of a parse tree. A
default Candidate Key must also be given to the relvar, requiring another parse tree
to be generated and executed to put the relevant data into the Keys Meta DB relvar.
Finally an empty relvalue must be created and stored in the default storage location
using the default storage mechanism4, ready for a relvalue to be assigned to it.
 If the relvar does already exist, then it must check that all attributes currently
referenced by the relvar’s properties are included among those being assigned to the
relvar. If this is not the case, then the relevant error must be flagged and no
assignment executed. (Hence this validation check must come first).

<==Key assignment. The basic functionality of the assignment is to add and/or remove
a set of Candidate Keys to a relvar. This requires a translation of the <==Key
assignment parse tree into an <--Insert and/or <--Delete assignment parse tree(s)
that will add and/or remove the necessary key data to/from the Keys Meta DB relvar.
The latter parse tree(s) is/are then executed.
 If the relvar currently has only a default key, then this must be removed when
using <==Key to assign a key. This should be incorporated into the above
assignments.
 Depending on the definitional state of the relvar being assigned attributes, the
assignment may have additional tasks to accomplish.
 If the relvar does not yet exist and is being created by the assignment, then it will
also have to create the relvar by inserting the relevant data into the Relations Meta
DB relvar, requiring another parse tree to be generated and executed. No empty
relvalue is created and stored, because this is logically impossible since all the
attributes are not yet known.
 If the relvar does already exist and attributes have been assigned to it, then it
must check that the relvar already has all the attributes in the to-be-assigned keys. If
this is not the case, then the relevant error must be flagged and no assignment
executed. (Hence this validation check must come first).

<--Remove assignment. The basic purpose of the assignment is to remove a relvar
from the DB, but only if that relvar’s value becomes an empty tuple set after the
operand relvalue is deleted from it.
 Thus to execute <--Remove requires first translating its parse tree into a
corresponding <--Delete operation on the relvar, and executing it.
 The value of the relvar is then checked. If it is not empty, the assignment

4
 The default is currently the only storage location and storage mechanism provided by the prototype.

[IncrementOne] : Implementation Notes 4th June 2018

David Livingstone

Page 6 of 6

terminates.
 If the value of the relvar is empty, then the relvar is removed from the DB. This
requires removing the storage of the empty relvalue from the DB5, together with the
following :

 Generate a <--Delete parse tree that removes the relvar from the Relations
Meta DB relvar.

 Generate a <--Delete parse tree that removes the relvar from the Attributes
Meta DB relvar.

 Generate a <--Delete parse tree that removes the relvar from the Keys Meta
DB relvar6.

 Execute the above parse trees.

The ExecuteTree Method in [IncrementOne] Operators and
Assignments
To ensure that they fit into the current prototype and be executed, the ExecuteTree
method of their classes must continue to be a public member function whose input is a
pointer to its operand (of class CTable) and whose output is a Boolean value. The
output must be True if the operator/assignment executes correctly, and False otherwise.
 All the ExecuteTree methods should call a function, named after the
operator/assignment in question, to actually execute the operator/assignment. For
generality, let that function be called fn. fn should be a private member function of the
‘Token’ class. ExecuteTree must continue to handle the result and consequences of
fn’s execution.

Internally fn should carry out all the required validation checks and other algorithmic
requirements, translate the input parse tree into the required parse tree(s), and then
execute those parse tree(s). In doing so, it must not re-invent algorithms to execute
other operators/assignments that are invoked by the parse trees, but use their
ExecuteTree method(s).

In order to translate an [IncrementOne] operator/assignment into a parse tree(s), it may
be necessary to develop purely internal operators/assignments, i.e. an
operator/assignment that does not appear in RAQUEL, but is required for the effective
execution of the final parse tree. For example, it might be useful in the implementation
of <--Remove to have an operator that checks for an empty relvalue. This would
correspond to the “Intermediate Nodes” used in the internal parse trees of the BS12
Relational Algebra DBMS – see slide 30 of the Business System 12 presentation.

5
 A relvalue that has no tuples is a legitimate relvalue.

6
 In future, when Ad Hoc Integrity Constraints are implemented, these will also have to be deleted from

the relevant Meta DB relvar.

https://www.northumbria.ac.uk/static/5007/ceispdf/1937017/h_darwen1.pdf

