
Debugging the Tokeniser To Support ‘IncrementOne’ 31st January 2019 

David Livingstone 

Page 1 of 4 

Debugging the Tokeniser to Support the ‘IncrementOne’ 
Development 

Tokeniser Tests 
During January 2019, the Tokeniser was tested to ensure that it could handle the 
      Meta operator, and 
     <==Attribute 
     <==Key 
     <--Remove assignments 
without further development. 

As expected - because the operator and assignments all conform to the 
RAQUEL syntax - the Tokeniser handled them all correctly, and needed no 
debugging or extension to cope with them correctly. 

However in the course of testing, several bugs were found that had not been 
discovered before.  All were fixed. 

In order to carry out the testing and debugging, a copy from the prototype of the 
InputStack class’s Tokeniser member function was made as a standalone function.  
It was this copy that was tested and debugged.  The resulting bug fixes in that copy 
were then applied to the InputStack class’s Tokeniser member function. 

Being able to run and inspect the Tokeniser in isolation made it far easier to test 
and debug.  Within the prototype, it is one of many objects related together in 
complex ways.  This makes it very difficult to see what outcome is due solely to the 
Tokeniser and what might be the result of some other interaction. 

A ‘main’ program was written to provide a test harness for the Tokeniser.  ‘main’ 
calls the Tokeniser and provides a means of : 

1. Enabling the tester to input Raquel statements that are then fed to the 
Tokeniser. 

2. Displaying the resulting word tokens (actually a vector of ‘Lex Token’ 
structs) created by the Tokeniser. 

3. Displaying the resulting errors (actually a vector of integer error numbers) 
found by the Tokeniser. 

The Tokeniser uses a set of utility functions that are also member functions of the 
prototype’s InputStack class.  They are placed in ‘NumUtil’, a .cpp and 
corresponding .h file. 
  The debugged version of the Tokeniser uses an additional function, 
‘issingle(ch)’, which has to be included as an additional InputStack member 
function. 

‘TokWOutil’, a .cpp and corresponding .h file, contains the Tokeniser function per 
se.  Its .h file also contains those items closely bound to the Tokeniser, but found in 
a variety of locations within the prototype : 

1. Enumerated type ‘EModuleID’  -  the RaquelDBMS class .h file 



Debugging the Tokeniser To Support ‘IncrementOne’ 31st January 2019 

David Livingstone 

Page 2 of 4 

2. Enumerated type ‘ETokeniserErrors’ -  the InputStack class .h file. 

3. Enumerated type ‘ELexTokenType’ -  the TokenTypes .h file. 

4. ‘SLexToken’ struct definition  -  the TokenTypes .h file. 

5. ‘LexTokenVector’ typedef   -  the TokenTypes .h file. 

For ease of use by the ‘main’ program, the test Tokeniser function was modified to 
return a standard vector of error numbers called ‘Errors’. 
  In the prototype, the InputStack class includes a protected data member 
called ‘m_pErrors’, which is a standard vector of pointers to error numbers; the 
prototype’sTokeniser uses this instead, and does not return an explicit result. 

The InputStack’s Tokeniser is called ‘TokeniseQuery’.  The name ‘Tokeniser’ or 
‘Tokenise’ is preferred, since all forms of Raquel statement are tokenised in the 
same way, not just query statements. 

The GNU ‘g++’ compiler was used, with the ‘–g’ flag (so that the ‘gdb’ debugger 
could be used with the compiled code) and the ‘-Wall’ flag to reveal any potentially 
undesirable code formulations. 
  The executable result was called ‘ErrToken’, as it can output both error 
numbers and word tokens. 

Bugs Found 
They were : 

1. Any whitespace character occurring at the beginning of parameter text, i.e. 
immediately after the initial ‘[‘ bracket, was omitted. 

2. The ‘(‘ and ‘)’ parentheses were not always handled correctly if they were 
not separated from other characters in the statement by a space character; 
they were always handled correctly if there was a space character 
separation.  The specific problems were : 

 ‘)’ was ignored if it was not preceded by a space character. 

 ‘)’ was ignored if it was not followed by a space character, except at the 
end of a statement where it was accepted. 

 ‘(’ was ignored if it was not preceded by a space character.  ‘(’ was still 
accepted if it was not followed by a space character. 

The errors reported by the Tokeniser when it failed to handle parentheses 
correctly were ‘Unbalanced Left Parenthesis’ or ‘Unbalanced Right 
Parenthesis’. 

3. The state variables ‘’@’ and ‘#’ were ignored.  These are not planned to be 
implemented in the near future, so have not been considered before.  (Note 
that ‘@’ is convenient for use with the <--Remove assignment). 

4. The ‘-Wall’ flag : 

 shows 2 variables that were declared within the Tokeniser but never 
used by it.  They were : 
o Int SP = 0;  //Start position of new token. 
o eLexTokenType eCurrentType = eLEXTOKEN_KEYWORD. 



Debugging the Tokeniser To Support ‘IncrementOne’ 31st January 2019 

David Livingstone 

Page 3 of 4 

 suggests that the ‘while’ statement used to go through each character of 
the input statement, viz. 
  while (ch = szQuery[ iStatementoffset++ ]) 

should have an extra pair of parentheses around the ‘while’ condition. 

Bug Fixes 
The following table summarises the fixes used to solve the bugs :- 

Bug 
No. 

Corrective Action Date Applied to 
Repo 

4 The 2 variables deleted. 

‘while’ condition parentheses added. 

18th January 2019 

1st February 2019 

1 At state Enter?, Event whitespace, the 
following Action added to existing actions : 

“Append (whitespace) character to 
parameter token.” 

18th January 2019 

2 At state Exit?, Event ‘(‘, the 

 “P ← P + 1” 

Action added to existing ELSE actions. 

At state Exit?, Event ‘)‘, the 

“P ← P - 1” 

 Action added to existing ELSE actions . 

Their previous omission meant 
parentheses were not always correctly 
counted, so their correct balancing and 
nesting was not always achieved. 

1st February 2019 

3 In the Standard and Keyword states, the 
standalone events did not always correctly 
handle the single characters { @ # , ; : } 
which are only ever meaningful on their 
own, as opposed to the remaining 
standalone characters where they may or 
may not appear in combination with other 
characters. 

The single characters are now treated 
separately, a word token being created for 
each one.  The remaining standalone 
characters are treated as before. 

1st February 2019 



Debugging the Tokeniser To Support ‘IncrementOne’ 31st January 2019 

David Livingstone 

Page 4 of 4 

The ‘Logical Design of the Tokeniser’ has been amended appropriately  

The bug fixes were tested on a number of sample RAQUEL statements to ensure 
that both syntactically correct statements were tokenised correctly and syntactically 
invalid statements returned the correct error numbers. 

The changes were made to the InputStack.cpp file in the 
RaquelDBMS/Branches/AddMeta/src directory of the repository on Sourceforge. 

The extra work of extracting code from the prototype, and carrying across the bug 
fixes back to the prototype, was considered well worthwhile because of the ease of 
testing and debugging provided. 
  All the bugs were located within the internals of the Tokeniser function and 
not in its interfaces; thus no problems arose from copying the bug fixes into the 
code of the prototype’s InputStack class. 

Note 
Use of the ‘–Wall’ flag of the ‘g++’ compiler also warned of the “Unknown Escape 
Sequence” ‘\A’ in text “\AE\AE”.  ‘\AE’ is the ASCII character expressed as the 
decimal value ‘174’ and hex value ‘AE’.   

The warning is because the character is not part of the basic ASCII character set 
expressible in 128 bits. 
  It is in the extended part of the ASCII character set and represents the 
character ‘®’. 

The logical design of the Tokeniser calls for its output be a sequence of word 
tokens that include an initial and a terminating word token.  The terminating word 
token was specifically designed to include the text “®®”, because ‘®’ suggests the 
‘Return’ key and hence the end of a statement.  (The ASCII character ‘®’ is now 
considered to represent a registered trademark).  Therefore the text “\AE\AE” is not 
an error. 

It could be replaced by the basic ASCII character expressed as the decimal value 
‘13’ and hex value ‘0D’, and used to represent ‘CR’ or ‘enter/carriage return’. 
  However the text “®®” is expected by the Compactor and passed through to 
the Parser.  Therefore the change would have to be applied throughout the 
Tokeniser, Compactor and Parser, or an error would be created. 

 


